학술학회  
진화하는 의료 AI…왓슨 오류 절반 줄인 모델 개발
동경의대 마사야 사토 연구진, 독자적 프레임 워크 개발
이인복 기자 (news@medicaltimes.com)
기사입력 : 2019-06-07 06:00
0
  • 다변화 러닝 통해 오류 절반 감소…정확도 87.3%까지 상승
|메디칼타임즈 이인복 기자|기존 딥러닝 기반 인공지능의 오류 비율을 절반 이하로 줄이면서도 90%에 가까운 진단 정확도를 보이는 의료 인공지능(AI)이 나와 학계의 주목을 받고 있다.

과거 딥러닝 혹은 학습 트리 등 한가지 방법으로 분석이 이뤄지던 AI를 분석법까지 스스로 학습하게해 가장 효율적이고 정확한 분석법으로 결과를 뽑아내는 기술이 나온 것. 이에 따라 과연 이러한 기술이 임상에서 활용될 수 있을지 주목된다.

일본 동경의대 부속병원 마사야 사토, 텐타로 모리모토 연구진은 새로운 알고리즘과 명령 코드 파라미터(Parameter)를 활용한 질병 예측 인공지능을 개발하고 5일 네이쳐(nature) 자매 저널인 사이언티픽 리포트(Scientific Reports)에 게재했다.(Article number 7704. 2019)

연구진은 기존의 의료 인공지능이 의사결정 트리나 딥러닝, 선형회귀모델 중 하나의 방식으로 구동되는데서 벗어나 이 모든 방법 중에 최상의 결과를 낼 수 있는 방안을 스스로 검토하는 시스템으로 차별화를 시도했다.

하나의 정해진 프레임에서 분석을 시작하는 것과 달리 아예 분석 방법조차 학습을 통해 선택이 가능한 독자적 비선형 모델인 '프레임 워크(Frame work)'를 구축한 것.

이러한 방식을 이용하면 환자의 일상 진료 정보를 입력시 연구자가 도출하고 싶은 항목을 선택하면 자동으로 가장 정확도가 높고 매개 변수가 작은 데이터를 스스로 분석하고 결과를 도출한다는 점에서 정확도를 획기적으로 높일 수 있다.

실제로 간세포 암종 즉 간암을 대상으로 하는 시범 평가 결과에서도 이러한 차별성은 그대로 드러났다.

과거 의료 인공지능들이 일정한 종양 마커를 기준으로 하는데 반해 이 프로그램은 간 염증, 간 섬유증, 간 기능 및 간염 바이러스 감염 상태의 바이오마커를 모두 수집해 간세포 암종(HCC)을 예측하는데 활용한 것이다.

이에 맞춰 동경의대 부속병원에서 치료를 받은 간암 환자 539명과 간세포 암종이 없는 환자 1043명의 데이터 세트를 입력하고 예측 프로그램을 가동한 결과 이 프로그램은 머신 러닝과 의사 결정 트리를 가장 효과적인 분석으로 결정해 87.3%라는 높은 예측 정확도를 보였다.

같은 환자를 딥러닝 기반의 의료 인공지능에 대입한 결과 가장 높은 정확도가 83.5%였다는 점을 감안하면 이를 뛰어넘는 기술이다.

이러한 프레임 워크는 과거 딥러닝에 매몰돼 있던 의료 인공지능을 한 단계 성장시킬 수 있을 것으로 연구진은 기대하고 있다.

딥러닝이 이미지와 비디오, 음성에 대한 처리 기능을 획기적으로 발전시켰지만 유의미한 결과를 얻기 위해서는 너무나 방대한 데이터가 필요한데다 임상 결과를 모두 입력해야 하는 만큼 실제 임상에서 활용하기는 어려움이 따랐기 때문이다.

그러나 연구진의 프레임 워크는 적은 자료만으로도 가장 오류가 작고 정확도가 높은 진단 기술을 스스로 학습해 도출한다는 점에서 향후 의료 인공지능의 최적 모델이라는 것이 연구진의 설명이다.

논문의 교신저자인 마사야 사토 교수는 "현재 개발된 프레임 워크는 현대의학의 궁극적 목표 중 하나인 맞춤 의학을 완전히 구현할 수 있는 최적의 모델"이라며 "다양한 종류의 데이터를 무궁무진한 방법으로 적용할 수 있다는 점에서 의학 연구와 임상에 새로운 변화를 가져올 것"이라고 내다봤다.
  • 메디칼타임즈는 독자의 제보에 응답합니다.
    • 이 기사를 쓴

      이인복 기자

    • 4차 산업의 핵심인 의료기기와 의학·학술 분야 전반을 취재 보도하고 있습니다.
    • 기사 관련 궁금증이나 제보할 내용이 있으면 지금 이인복 기자에게 연락주세요.
      메디칼타임즈는 여러분의 제보에 응답합니다.
    • 사실관계 확인 후 기사화된 제보에 대해서는 소정의 원고료(건당 5만원)을 지급해드립니다.
      ※프로필을 클릭하면 기사 제보 페이지로 이동합니다.
    독자의견
    0
    익명의견 쓰기 | 실명의견쓰기 운영규칙
    닫기

    댓글 운영방식은

    댓글은익명게재 방식으로 운영되고 있습니다, 익명은 필명으로 등록 가능하며, 대댓글은 익명으로 등록 가능합니다.

    댓글의 삭제 기준은

    다음의 경우 사전 통보없이 삭제하고 아이디 이용정지 또는 영구 가입제한이 될 수도 있습니다.

    • 저작권·인격권 등 타인의 권리를 침해하는 경우

      상용 프로그램의 등록과 게재, 배포를 안내하는 게시물

      타인 또는 제3자의 저작권 및 기타 권리를 침해한 내용을 담은 게시물

    • 근거 없는 비방·명예를 훼손하는 게시물

      특정 이용자 및 개인에 대한 인신 공격적인 내용의 글 및 직접적인 욕설이 사용된 경우

      특정 지역 및 종교간의 감정대립을 조장하는 내용

      사실 확인이 안된 소문을 유포 시키는 경우

      욕설과 비어, 속어를 담은 내용

      정당법 및 공직선거법, 관계 법령에 저촉되는 경우(선관위 요청 시 즉시 삭제)

      특정 지역이나 단체를 비하하는 경우

      특정인의 명예를 훼손하여 해당인이 삭제를 요청하는 경우

      특정인의 개인정보(주민등록번호, 전화, 상세주소 등)를 무단으로 게시하는 경우

      타인의 ID 혹은 닉네임을 도용하는 경우

    • 게시판 특성상 제한되는 내용

      서비스 주제와 맞지 않는 내용의 글을 게재한 경우

      동일 내용의 연속 게재 및 여러 기사에 중복 게재한 경우

      부분적으로 변경하여 반복 게재하는 경우도 포함

      제목과 관련 없는 내용의 게시물, 제목과 본문이 무관한 경우

      돈벌기 및 직·간접 상업적 목적의 내용이 포함된 게시물

      게시물 읽기 유도 등을 위해 내용과 무관한 제목을 사용한 경우

    • 수사기관 등의 공식적인 요청이 있는 경우

    • 기타사항

      각 서비스의 필요성에 따라 미리 공지한 경우

      기타 법률에 저촉되는 정보 게재를 목적으로 할 경우

      기타 원만한 운영을 위해 운영자가 필요하다고 판단되는 내용

    • 사실 관계 확인 후 삭제

      저작권자로부터 허락받지 않은 내용을 무단 게재, 복제, 배포하는 경우

      타인의 초상권을 침해하거나 개인정보를 유출하는 경우

      당사에 제공한 이용자의 정보가 허위인 경우 (타인의 ID, 비밀번호 도용 등)

    • ※이상의 내용중 일부 사항에 적용될 경우 이용약관 및 관련 법률에 의해 제재를 받으실 수도 있으며, 민·형사상 처벌을 받을 수도 있습니다.

      ※위에 명시되지 않은 내용이더라도 불법적인 내용으로 판단되거나 메디칼타임즈 서비스에 바람직하지 않다고 판단되는 경우는 선 조치 이후 본 관리 기준을 수정 공시하겠습니다.

      ※기타 문의 사항은 메디칼타임즈 운영자에게 연락주십시오. 메일 주소는 admin@medicaltimes.com입니다.

    등록
    0/300
    등록
    0/300